Permitted sets on Cantor group

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

40th Winter School in Abstract Analysis, section Topology and Set Theory, Hejnice, 28. 1. – 4. 2. 2012

・ロト ・回ト ・ヨト ・ヨト ・ヨ

San

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

・ロット (日) ・ (日) ・ (日)

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

・ロト ・回ト ・ヨト ・ヨト

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi: \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

・ロト ・回ト ・ヨト ・ヨト ・ヨ

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

(日) (四) (王) (王) (王)

na C

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

(日) (四) (王) (王) (王)

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● ����

- $\bullet~(\mathbb{T},+)=\mbox{circle group}=\mathbb{R}/\mathbb{Z}=[0,1)$ with addition modulo 1
- $X \subseteq \mathbb{T}$ is Arbault set if there is an increasing sequence $\{n_k\}_{k \in \omega}$ such that $\forall x \in X \ n_k x \to 0$
- $n_k x \rightarrow 0$ does not imply x = 0 because we calculate modulo 1
- if $x \in \mathbb{T}$ is irrational then $\{nx : n \in \omega\}$ is dense in \mathbb{T}
- functions of form $x \mapsto nx$ are characters of \mathbb{T} , i.e., continuous group homomorphisms $\chi : \mathbb{T} \to \mathbb{T}$
- there are perfect Arbault sets
- all Arbault sets are meager and have Lebesgue measure zero
- family of Arbault sets is closed under generating of a subgroup of T, is not closed under unions

• $Y \subseteq \mathbb{T}$ is permitted if $X \cup Y$ is Arbault for every X Arbault

- Arbault, Erdős (1952): every countable set is permitted
- Körner (1972): there is no perfect permitted set
- Bukovský, Kholshchevnikova, Repický (1995): every γ -set is permitted
- P.E. (2005): every permitted set is perfectly meager

・ロト ・回ト ・ヨト ・ヨト

- $Y \subseteq \mathbb{T}$ is permitted if $X \cup Y$ is Arbault for every X Arbault
- Arbault, Erdős (1952): every countable set is permitted
- Körner (1972): there is no perfect permitted set
- Bukovský, Kholshchevnikova, Repický (1995): every γ -set is permitted
- P.E. (2005): every permitted set is perfectly meager

・ロト ・回ト ・ヨト ・ヨト

- $Y \subseteq \mathbb{T}$ is permitted if $X \cup Y$ is Arbault for every X Arbault
- Arbault, Erdős (1952): every countable set is permitted
- Körner (1972): there is no perfect permitted set
- Bukovský, Kholshchevnikova, Repický (1995): every γ -set is permitted
- P.E. (2005): every permitted set is perfectly meager

- $Y \subseteq \mathbb{T}$ is permitted if $X \cup Y$ is Arbault for every X Arbault
- Arbault, Erdős (1952): every countable set is permitted
- Körner (1972): there is no perfect permitted set
- Bukovský, Kholshchevnikova, Repický (1995): every γ -set is permitted
- P.E. (2005): every permitted set is perfectly meager

San

- $Y \subseteq \mathbb{T}$ is permitted if $X \cup Y$ is Arbault for every X Arbault
- Arbault, Erdős (1952): every countable set is permitted
- Körner (1972): there is no perfect permitted set
- Bukovský, Kholshchevnikova, Repický (1995): every γ -set is permitted
- P.E. (2005): every permitted set is perfectly meager

イロト イポト イヨト イヨト 二日

- $|X| \leq \aleph_1 \Rightarrow X$ is permitted,
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size \aleph_1 ?
- are permitted sets σ -additive?

・ロト ・回ト ・ヨト ・ヨト

- $\bullet \ |X| \leq \aleph_1 \Rightarrow X \text{ is permitted,}$
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size \aleph_1 ?
- are permitted sets σ -additive?

・ロト ・回ト ・ヨト ・ヨト

- $\bullet \ |X| \leq \aleph_1 \Rightarrow X \text{ is permitted,}$
- there exists a permitted set of size c,
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size \aleph_1 ?
- are permitted sets σ -additive?

- $|X| \leq \aleph_1 \Rightarrow X$ is permitted,
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size \aleph_1 ?
- are permitted sets σ -additive?

- $|X| \leq \aleph_1 \Rightarrow X$ is permitted,
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size \aleph_1 ?
- are permitted sets σ -additive?

San

- $|X| \leq \aleph_1 \Rightarrow X$ is permitted,
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

• does there exist a permitted set of size \aleph_1 ?

• are permitted sets σ -additive?

na C

- $|X| \leq \aleph_1 \Rightarrow X$ is permitted,
- \bullet there exists a permitted set of size $\mathfrak{c},$
- X is permitted $\Rightarrow |X| \leq \aleph_1$.

Open problems:

- does there exist a permitted set of size ℵ₁?
- are permitted sets σ -additive?

na C

• $(2,+)=\{0,1\}$ with addition modulo 2

- Cantor group = 2^ω with product topology and + defined coordinatewisely
- a (principal) difference from $(\mathbb{R}, +)$: $\forall x \in 2^{\omega} \ x + x = 0$
- $X \subseteq 2^{\omega}$ is Arbault set if there exists a nontrivial sequence $\{\chi_n\}_{n \in \omega}$ of characters of 2^{ω} such that $\forall x \in X \ \chi_n(x) \to 0$
- what are the characters of 2^{ω} ?
- what is a nontrivial sequence?

・ロト ・回ト ・ヨト ・ヨト

- $\bullet~(2,+)=\{0,1\}$ with addition modulo 2
- $\bullet \mbox{ Cantor group} = 2^{\omega}$ with product topology and + defined coordinatewisely
- a (principal) difference from $(\mathbb{R}, +)$: $\forall x \in 2^{\omega} \ x + x = 0$
- $X \subseteq 2^{\omega}$ is Arbault set if there exists a nontrivial sequence $\{\chi_n\}_{n \in \omega}$ of characters of 2^{ω} such that $\forall x \in X \ \chi_n(x) \to 0$
- what are the characters of 2^{ω} ?
- what is a nontrivial sequence?

- $\bullet~(2,+)=\{0,1\}$ with addition modulo 2
- $\bullet \mbox{ Cantor group} = 2^{\omega}$ with product topology and + defined coordinatewisely
- a (principal) difference from $(\mathbb{R}, +)$: $\forall x \in 2^{\omega} \ x + x = 0$
- $X \subseteq 2^{\omega}$ is Arbault set if there exists a nontrivial sequence $\{\chi_n\}_{n \in \omega}$ of characters of 2^{ω} such that $\forall x \in X \ \chi_n(x) \to 0$
- what are the characters of 2^{ω} ?
- what is a nontrivial sequence?

San

- $\bullet~(2,+)=\{0,1\}$ with addition modulo 2
- Cantor group = 2^ω with product topology and + defined coordinatewisely
- a (principal) difference from $(\mathbb{R},+)$: $\forall x \in 2^{\omega} \ x+x=0$
- $X \subseteq 2^{\omega}$ is Arbault set if there exists a nontrivial sequence $\{\chi_n\}_{n \in \omega}$ of characters of 2^{ω} such that $\forall x \in X \ \chi_n(x) \to 0$
- what are the characters of 2^{ω} ?
- what is a nontrivial sequence?

San

- $\bullet~(2,+)=\{0,1\}$ with addition modulo 2
- Cantor group = 2^ω with product topology and + defined coordinatewisely
- a (principal) difference from $(\mathbb{R},+)$: $\forall x \in 2^{\omega} \ x + x = 0$
- $X \subseteq 2^{\omega}$ is Arbault set if there exists a nontrivial sequence $\{\chi_n\}_{n \in \omega}$ of characters of 2^{ω} such that $\forall x \in X \ \chi_n(x) \to 0$
- what are the characters of 2^{ω} ?
- what is a nontrivial sequence?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- since x + x = 0 for all $x \in 2^{\omega}$, characters of 2^{ω} can be viewed as continuous group homomorphisms $\chi : 2^{\omega} \to 2$
- by the continuity of characters and compactness of 2^{ω} , for every character χ there is $n \in \omega$ such that $\chi(x)$ depends only on $x \upharpoonright n$
- since characters are group homomorphisms, for every character χ there exists a finite set $A \subseteq \omega$ such that

$$\chi(x) = \chi_A(x) = \sum_{n \in A} x(n) \pmod{2}$$

- since x + x = 0 for all $x \in 2^{\omega}$, characters of 2^{ω} can be viewed as continuous group homomorphisms $\chi : 2^{\omega} \to 2$
- by the continuity of characters and compactness of 2^{ω} , for every character χ there is $n \in \omega$ such that $\chi(x)$ depends only on $x \upharpoonright n$
- since characters are group homomorphisms, for every character χ there exists a finite set $A \subseteq \omega$ such that

$$\chi(x) = \chi_A(x) = \sum_{n \in A} x(n) \pmod{2}$$

- since x + x = 0 for all $x \in 2^{\omega}$, characters of 2^{ω} can be viewed as continuous group homomorphisms $\chi : 2^{\omega} \to 2$
- by the continuity of characters and compactness of 2^{ω} , for every character χ there is $n \in \omega$ such that $\chi(x)$ depends only on $x \upharpoonright n$
- since characters are group homomorphisms, for every character χ there exists a finite set $A \subseteq \omega$ such that

$$\chi(x) = \chi_A(x) = \sum_{n \in A} x(n) \pmod{2}$$

- since x + x = 0 for all $x \in 2^{\omega}$, characters of 2^{ω} can be viewed as continuous group homomorphisms $\chi : 2^{\omega} \to 2$
- by the continuity of characters and compactness of 2^{ω} , for every character χ there is $n \in \omega$ such that $\chi(x)$ depends only on $x \upharpoonright n$
- since characters are group homomorphisms, for every character χ there exists a finite set $A \subseteq \omega$ such that

$$\chi(x) = \chi_A(x) = \sum_{n \in A} x(n) \pmod{2}$$

- characters are functions $\chi_A(x) = \sum_{n \in A} x(n)$, where $A \in [\omega]^{<\omega}$
- we do not want nonempty open set to be Arbault

We say that a sequence $\{A_n\}_{n \in \omega}$ of nonempty finite subsets of ω is regular if for every n, $\max A_n < \min A_{n+1}$.

Notions of Arbault sets obtained for the following nontriviality conditions on $\{A_n\}_{n \in \omega}$ are equivalent:

- $\bigcup_{n \in \omega} A_n$ is infinite,
- $\{A_n\}_{n \in \omega}$ is regular.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

San

 \bullet characters are functions $\chi_A(x) = \sum_{n \in A} x(n)$, where $A \in [\omega]^{<\omega}$

• we do not want nonempty open set to be Arbault

We say that a sequence $\{A_n\}_{n \in \omega}$ of nonempty finite subsets of ω is regular if for every n, $\max A_n < \min A_{n+1}$.

Notions of Arbault sets obtained for the following nontriviality conditions on $\{A_n\}_{n\in\omega}$ are equivalent:

- $\bigcup_{n \in \omega} A_n$ is infinite,
- $\{A_n\}_{n \in \omega}$ is regular.

・ロト ・ 日 ト ・ 日 ト ・ 日

San

 \bullet characters are functions $\chi_A(x) = \sum_{n \in A} x(n),$ where $A \in [\omega]^{<\omega}$

• we do not want nonempty open set to be Arbault

We say that a sequence $\{A_n\}_{n \in \omega}$ of nonempty finite subsets of ω is regular if for every n, $\max A_n < \min A_{n+1}$.

Notions of Arbault sets obtained for the following nontriviality conditions on $\{A_n\}_{n \in \omega}$ are equivalent:

- $\bigcup_{n \in \omega} A_n$ is infinite,
- $\{A_n\}_{n \in \omega}$ is regular.

- \bullet characters are functions $\chi_A(x) = \sum_{n \in A} x(n)$, where $A \in [\omega]^{<\omega}$
- $\bullet\,$ we do not want nonempty open set to be Arbault

We say that a sequence $\{A_n\}_{n\in\omega}$ of nonempty finite subsets of ω is regular if for every n, $\max A_n < \min A_{n+1}$.

Notions of Arbault sets obtained for the following nontriviality conditions on $\{A_n\}_{n \in \omega}$ are equivalent:

- $\bigcup_{n \in \omega} A_n$ is infinite,
- $\{A_n\}_{n\in\omega}$ is regular.

- \bullet characters are functions $\chi_A(x) = \sum_{n \in A} x(n),$ where $A \in [\omega]^{<\omega}$
- $\bullet\,$ we do not want nonempty open set to be Arbault

We say that a sequence $\{A_n\}_{n\in\omega}$ of nonempty finite subsets of ω is regular if for every n, $\max A_n < \min A_{n+1}$.

Notions of Arbault sets obtained for the following nontriviality conditions on $\{A_n\}_{n\in\omega}$ are equivalent:

- $\bigcup_{n\in\omega}A_n$ is infinite,
- $\{A_n\}_{n\in\omega}$ is regular.

Denote $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} = \{x\in 2^{\omega}: \chi_{A_n}(x)\to 0\}.$

- $X \subseteq 2^{\omega}$ is Arbault set if $X \subseteq \operatorname{Arb}_{\{A_n\}_{n \in \omega}}$ for some regular sequence $\{A_n\}_{n \in \omega}$
- \bullet Arbault sets belong to $\mathcal{E},\,\sigma\text{-ideal}$ generated by closed sets of measure zero
- family of Arbault sets is closed under generating a subgroup of $2^\omega,$ not closed under unions

Example:

$$\begin{split} X &= \mathsf{Arb}_{\{2n\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n) = 0 \}, \\ Y &= \mathsf{Arb}_{\{2n+1\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n+1) = 0 \}. \end{split}$$

The group generated by $X \cup Y$ is 2^{ω} , hence $X \cup Y$ is not Arbault.

Denote $\operatorname{Arb}_{\{A_n\}_{n \in \omega}} = \{x \in 2^{\omega} : \chi_{A_n}(x) \to 0\}.$

- $X\subseteq 2^{\omega}$ is Arbault set if $X\subseteq \operatorname{Arb}_{\{A_n\}_{n\in\omega}}$ for some regular sequence $\{A_n\}_{n\in\omega}$
- \bullet Arbault sets belong to $\mathcal{E},\,\sigma\text{-ideal}$ generated by closed sets of measure zero
- family of Arbault sets is closed under generating a subgroup of $2^\omega,$ not closed under unions

Example:

$$\begin{split} X &= \mathsf{Arb}_{\{2n\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n) = 0 \}, \\ Y &= \mathsf{Arb}_{\{2n+1\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n+1) = 0 \}. \end{split}$$

The group generated by $X \cup Y$ is 2^{ω} , hence $X \cup Y$ is not Arbault.

San

Denote $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} = \{x\in 2^{\omega}: \chi_{A_n}(x) \to 0\}.$

- $X\subseteq 2^{\omega}$ is Arbault set if $X\subseteq \operatorname{Arb}_{\{A_n\}_{n\in\omega}}$ for some regular sequence $\{A_n\}_{n\in\omega}$
- \bullet Arbault sets belong to $\mathcal{E},\,\sigma\text{-ideal}$ generated by closed sets of measure zero
- family of Arbault sets is closed under generating a subgroup of $2^\omega,$ not closed under unions

Example:

$$\begin{split} X &= \mathsf{Arb}_{\{2n\}_{n\in\omega}} = \{x \in 2^{\omega} : \forall^{\infty}n \ x(2n) = 0\}, \\ Y &= \mathsf{Arb}_{\{2n+1\}_{n\in\omega}} = \{x \in 2^{\omega} : \forall^{\infty}n \ x(2n+1) = 0\}. \end{split}$$

The group generated by $X \cup Y$ is 2^{ω} , hence $X \cup Y$ is not Arbault.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Denote $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} = \{x\in 2^{\omega}: \chi_{A_n}(x) \to 0\}.$

- $X\subseteq 2^{\omega}$ is Arbault set if $X\subseteq \operatorname{Arb}_{\{A_n\}_{n\in\omega}}$ for some regular sequence $\{A_n\}_{n\in\omega}$
- \bullet Arbault sets belong to $\mathcal{E},\,\sigma\text{-ideal}$ generated by closed sets of measure zero
- family of Arbault sets is closed under generating a subgroup of $2^\omega,$ not closed under unions

Example:

$$\begin{split} X &= \operatorname{Arb}_{\{2n\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n) = 0 \}, \\ Y &= \operatorname{Arb}_{\{2n+1\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n+1) = 0 \}. \end{split}$$

The group generated by $X \cup Y$ is 2^{ω} , hence $X \cup Y$ is not Arbault.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Denote $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} = \{x \in 2^{\omega} : \chi_{A_n}(x) \to 0\}.$

- $X\subseteq 2^{\omega}$ is Arbault set if $X\subseteq \operatorname{Arb}_{\{A_n\}_{n\in\omega}}$ for some regular sequence $\{A_n\}_{n\in\omega}$
- \bullet Arbault sets belong to $\mathcal{E},\,\sigma\text{-ideal}$ generated by closed sets of measure zero
- family of Arbault sets is closed under generating a subgroup of $2^\omega,$ not closed under unions

Example:

$$\begin{split} X &= \mathsf{Arb}_{\{2n\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n) = 0 \}, \\ Y &= \mathsf{Arb}_{\{2n+1\}_{n \in \omega}} = \{ x \in 2^{\omega} : \forall^{\infty} n \ x(2n+1) = 0 \}. \end{split}$$

The group generated by $X \cup Y$ is 2^{ω} , hence $X \cup Y$ is not Arbault.

(日) (四) (王) (王) (王)

$Y \subseteq 2^{\omega}$ is permitted if $X \cup Y$ is Arbault for every Arbault set Y.

- countable sets are permitted
- \bullet permitted sets are closed under generating a subgroup of 2^ω and under finite unions
- every set $X \subseteq 2^{\omega}$ of size $|X| < \mathfrak{s}$ is permitted

Denote Perm the ideal of permitted sets. Thus $non(Perm) \ge \mathfrak{s}$.

イロト イポト イヨト イヨト

$Y \subseteq 2^{\omega}$ is permitted if $X \cup Y$ is Arbault for every Arbault set Y.

• countable sets are permitted

- \bullet permitted sets are closed under generating a subgroup of 2^ω and under finite unions
- $\bullet \mbox{ every set } X \subseteq 2^\omega \mbox{ of size } |X| < \mathfrak{s} \mbox{ is permitted }$

Denote Perm the ideal of permitted sets. Thus $non(Perm) \ge \mathfrak{s}$.

- $Y \subseteq 2^{\omega}$ is permitted if $X \cup Y$ is Arbault for every Arbault set Y.
 - countable sets are permitted
 - \bullet permitted sets are closed under generating a subgroup of 2^ω and under finite unions
 - \bullet every set $X\subseteq 2^\omega$ of size $|X|<\mathfrak{s}$ is permitted

Denote Perm the ideal of permitted sets. Thus $non(Perm) \ge \mathfrak{s}$.

A Q Q

- $Y \subseteq 2^{\omega}$ is permitted if $X \cup Y$ is Arbault for every Arbault set Y.
 - countable sets are permitted
 - \bullet permitted sets are closed under generating a subgroup of 2^ω and under finite unions
 - $\bullet \mbox{ every set } X \subseteq 2^\omega \mbox{ of size } |X| < \mathfrak{s} \mbox{ is permitted }$

Denote Perm the ideal of permitted sets. Thus $non(Perm) \geq \mathfrak{s}$.

- $Y \subseteq 2^{\omega}$ is permitted if $X \cup Y$ is Arbault for every Arbault set Y.
 - countable sets are permitted
 - \bullet permitted sets are closed under generating a subgroup of 2^ω and under finite unions
 - every set $X \subseteq 2^{\omega}$ of size $|X| < \mathfrak{s}$ is permitted

Denote *Perm* the ideal of permitted sets. Thus $non(Perm) \ge \mathfrak{s}$.

Let $\{A_n\}_{n\in\omega},~\{B_n\}_{n\in\omega}$ be regular sequences. Denote

• $\{A_n\}_{n\in\omega} * \{B_n\}_{n\in\omega} = \left\{\bigcup_{k\in B_n} A_k\right\}_{n\in\omega}$,

• $\{A_n\}_{n\in\omega} < \{B_n\}_{n\in\omega}$ iff there exists a regular sequence $\{C_n\}_{n\in\omega}$ such that $\{A_n\}_{n\in\omega} =^* \{B_n\}_{n\in\omega} * \{C_n\}_{n\in\omega}$, i.e., $\forall^{\infty}n \ A_n = \bigcup_{k\in C_n} B_k$.

Theorem

Let $\{A_n\}_{n\in\omega}$, $\{B_n\}_{n\in\omega}$ be regular sequences. Then $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} \subseteq \operatorname{Arb}_{\{B_n\}_{n\in\omega}}$ if and only if $\{B_n\}_{n\in\omega} < \{A_n\}_{n\in\omega}$.

・ロト ・四ト ・ヨト ・ヨト

Let $\{A_n\}_{n\in\omega},\,\{B_n\}_{n\in\omega}$ be regular sequences. Denote

• $\{A_n\}_{n\in\omega} * \{B_n\}_{n\in\omega} = \left\{\bigcup_{k\in B_n} A_k\right\}_{n\in\omega},$

• $\{A_n\}_{n\in\omega} < \{B_n\}_{n\in\omega}$ iff there exists a regular sequence $\{C_n\}_{n\in\omega}$ such that $\{A_n\}_{n\in\omega} =^* \{B_n\}_{n\in\omega} * \{C_n\}_{n\in\omega}$, i.e., $\forall^{\infty}n \ A_n = \bigcup_{k\in C_n} B_k$.

Theorem

Let $\{A_n\}_{n\in\omega}$, $\{B_n\}_{n\in\omega}$ be regular sequences. Then $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} \subseteq \operatorname{Arb}_{\{B_n\}_{n\in\omega}}$ if and only if $\{B_n\}_{n\in\omega} < \{A_n\}_{n\in\omega}$.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Let $\{A_n\}_{n\in\omega},\,\{B_n\}_{n\in\omega}$ be regular sequences. Denote

•
$$\{A_n\}_{n\in\omega} * \{B_n\}_{n\in\omega} = \{\bigcup_{k\in B_n} A_k\}_{n\in\omega},$$

• $\{A_n\}_{n\in\omega} < \{B_n\}_{n\in\omega}$ iff there exists a regular sequence $\{C_n\}_{n\in\omega}$ such that $\{A_n\}_{n\in\omega} =^* \{B_n\}_{n\in\omega} * \{C_n\}_{n\in\omega}$, i.e., $\forall^{\infty}n \ A_n = \bigcup_{k\in C_n} B_k$.

Theorem

Let $\{A_n\}_{n\in\omega}$, $\{B_n\}_{n\in\omega}$ be regular sequences. Then $\operatorname{Arb}_{\{A_n\}_{n\in\omega}} \subseteq \operatorname{Arb}_{\{B_n\}_{n\in\omega}}$ if and only if $\{B_n\}_{n\in\omega} < \{A_n\}_{n\in\omega}$.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Let $\{A_n\}_{n\in\omega},\,\{B_n\}_{n\in\omega}$ be regular sequences. Denote

•
$$\{A_n\}_{n\in\omega} * \{B_n\}_{n\in\omega} = \{\bigcup_{k\in B_n} A_k\}_{n\in\omega},$$

• $\{A_n\}_{n\in\omega} < \{B_n\}_{n\in\omega}$ iff there exists a regular sequence $\{C_n\}_{n\in\omega}$ such that $\{A_n\}_{n\in\omega} =^* \{B_n\}_{n\in\omega} * \{C_n\}_{n\in\omega}$, i.e., $\forall^{\infty}n \ A_n = \bigcup_{k\in C_n} B_k$.

Theorem

Let $\{A_n\}_{n \in \omega}$, $\{B_n\}_{n \in \omega}$ be regular sequences. Then $\operatorname{Arb}_{\{A_n\}_{n \in \omega}} \subseteq \operatorname{Arb}_{\{B_n\}_{n \in \omega}}$ if and only if $\{B_n\}_{n \in \omega} < \{A_n\}_{n \in \omega}$.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if for every regular sequence $\{A_n\}_{n \in \omega}$ there exists $\{B_n\}_{n \in \omega} < \{A_n\}_{n \in \omega}$ such that $\forall x \in X \ \chi_{B_n}(x) \to 0.$

Reg = the family of all regular sequences

Corollary

 $\operatorname{add}(\operatorname{Perm}) \geq \mathfrak{h}(\operatorname{Reg}, <).$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if for every regular sequence $\{A_n\}_{n \in \omega}$ there exists $\{B_n\}_{n \in \omega} < \{A_n\}_{n \in \omega}$ such that $\forall x \in X \ \chi_{B_n}(x) \to 0.$

Reg = the family of all regular sequences

Corollary

 $\operatorname{add}(\operatorname{Perm}) \geq \mathfrak{h}(\operatorname{Reg}, <).$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if for every regular sequence $\{A_n\}_{n \in \omega}$ there exists $\{B_n\}_{n \in \omega} < \{A_n\}_{n \in \omega}$ such that $\forall x \in X \ \chi_{B_n}(x) \to 0.$

Reg = the family of all regular sequences

Corollary

 $\operatorname{add}(\operatorname{Perm}) \geq \mathfrak{h}(\operatorname{Reg}, <).$

Corollary

Let $f: 2^{\omega} \to 2^{\omega}$ be of the form $f(x)(n) = \chi_{A_n}(x)$, for some sequence $\{A_n\}_{n \in \omega}$ of finite sets. If X is permitted then f[X] is permitted.

Functions of the above form are exactly the continuous group homomorphisms $f: 2^{\omega} \to 2^{\omega}$.

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if f[X] is Arbault set for every continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$.

・ロト ・回ト ・ヨト ・ヨト

Corollary

Let $f: 2^{\omega} \to 2^{\omega}$ be of the form $f(x)(n) = \chi_{A_n}(x)$, for some sequence $\{A_n\}_{n \in \omega}$ of finite sets. If X is permitted then f[X] is permitted.

Functions of the above form are exactly the continuous group homomorphisms $f:2^\omega\to 2^\omega.$

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if f[X] is Arbault set for every continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Corollary

Let $f: 2^{\omega} \to 2^{\omega}$ be of the form $f(x)(n) = \chi_{A_n}(x)$, for some sequence $\{A_n\}_{n \in \omega}$ of finite sets. If X is permitted then f[X] is permitted.

Functions of the above form are exactly the continuous group homomorphisms $f:2^\omega\to 2^\omega.$

Theorem

 $X \subseteq 2^{\omega}$ is permitted if and only if f[X] is Arbault set for every continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$.

San

 $X \subseteq 2^{\omega}$ is independent if for every $n \in \omega$, $\{x_k : k < n\} \subseteq X$, and $\{z_k : k < n\} \subseteq \{0, 1\}$, the set $\{i \in \omega : \forall k < n \ x_k(i) = z_k\}$ is infinite.

Theorem (analogue of Kronecker's approximation theorem)

Let $n \in \omega$, $\{x_k : k < n\} \subseteq 2^{\omega}$ be independent, $\{z_k : k < n\} \subseteq \{0, 1\}$. Then there exists $A \in [\omega]^{<\omega}$ such that $\forall k < n \ \chi_A(x_k) = z_k$.

Corollary

Every perfect set $P \subseteq 2^{\omega}$ there exists a continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$ such that $f[P] = 2^{\omega}$.

Corollary

There is no perfect permitted set.

イロト イヨト イヨト イヨト

 $X \subseteq 2^{\omega}$ is independent if for every $n \in \omega$, $\{x_k : k < n\} \subseteq X$, and $\{z_k : k < n\} \subseteq \{0, 1\}$, the set $\{i \in \omega : \forall k < n \ x_k(i) = z_k\}$ is infinite.

Theorem (analogue of Kronecker's approximation theorem)

Let $n \in \omega$, $\{x_k : k < n\} \subseteq 2^{\omega}$ be independent, $\{z_k : k < n\} \subseteq \{0, 1\}$. Then there exists $A \in [\omega]^{<\omega}$ such that $\forall k < n \ \chi_A(x_k) = z_k$.

Corollary

Every perfect set $P \subseteq 2^{\omega}$ there exists a continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$ such that $f[P] = 2^{\omega}$.

Corollary

There is no perfect permitted set.

イロト イヨト イヨト イヨト

 $X \subseteq 2^{\omega}$ is independent if for every $n \in \omega$, $\{x_k : k < n\} \subseteq X$, and $\{z_k : k < n\} \subseteq \{0, 1\}$, the set $\{i \in \omega : \forall k < n \ x_k(i) = z_k\}$ is infinite.

Theorem (analogue of Kronecker's approximation theorem)

Let $n \in \omega$, $\{x_k : k < n\} \subseteq 2^{\omega}$ be independent, $\{z_k : k < n\} \subseteq \{0, 1\}$. Then there exists $A \in [\omega]^{<\omega}$ such that $\forall k < n \ \chi_A(x_k) = z_k$.

Corollary

Every perfect set $P \subseteq 2^{\omega}$ there exists a continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$ such that $f[P] = 2^{\omega}$.

Corollary

There is no perfect permitted set.

イロト イポト イヨト イヨト

 $X \subseteq 2^{\omega}$ is independent if for every $n \in \omega$, $\{x_k : k < n\} \subseteq X$, and $\{z_k : k < n\} \subseteq \{0, 1\}$, the set $\{i \in \omega : \forall k < n \ x_k(i) = z_k\}$ is infinite.

Theorem (analogue of Kronecker's approximation theorem)

Let $n \in \omega$, $\{x_k : k < n\} \subseteq 2^{\omega}$ be independent, $\{z_k : k < n\} \subseteq \{0, 1\}$. Then there exists $A \in [\omega]^{<\omega}$ such that $\forall k < n \ \chi_A(x_k) = z_k$.

Corollary

Every perfect set $P \subseteq 2^{\omega}$ there exists a continuous group homomorphism $f: 2^{\omega} \to 2^{\omega}$ such that $f[P] = 2^{\omega}$.

Corollary

There is no perfect permitted set.

イロト イヨト イヨト イヨト